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Vicious walks with a wall, noncolliding meanders, and chiral
and Bogoliubov–de Gennes random matrices
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Spatially and temporally inhomogeneous evolution of one-dimensional vicious walkers with wall restriction
is studied. We show that its continuum version is equivalent with a noncolliding system of stochastic processes
called Brownian meanders. Here the Brownian meander is a temporally inhomogeneous process introduced by
Yor as a transform of the Bessel process that is the motion of radial coordinate of the three-dimensional
Brownian motion represented in spherical coordinates. It is proved that the spatial distribution of vicious
walkers with a wall at the origin can be described by the eigenvalue statistics of Gaussian ensembles of
Bogoliubov–de Gennes Hamiltonians of the mean-field theory of superconductivity, which have a particle-hole
symmetry. We report that a time evolution of the present stochastic process is fully characterized by the change
of symmetry classes from typeC to typeCI in the nonstandard classes of random matrix theory of Altland and
Zirnbauer. The relation between the noncolliding systems of the generalized meanders of Yor, which are
associated with the even-dimensional Bessel processes, and the chiral random matrix theory is also clarified.
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I. INTRODUCTION

Unbalance between short-ranged properties of inte
tions among elements and long-ranged cooperative eff
realized in macroscopic levels is a significant feature of s
tems far from equilibrium. Even in one dimension the co
tact process, a model of infection of a contagious dise
exhibits a continuous phase transition at a critical valuelc of
the infection ratel, and inl.lc infected and healthy indi-
viduals establish coexistence without detailed balance@1,2#.
Boundary conditions locally imposed at the two edges
one-dimensional lattice play an essential role in determin
the bulk properties in the asymmetric simple exclusion p
cess, which can be regarded as a model of traffic flows
highways@3–5#. The purpose of the present paper is to p
pose one theoretical treatment of such emergence of lo
range effects in simple~i.e., short-ranged! stochastic models
using vicious-walker models originally introduced by Fish
for wetting and melting transitions@6#. The key point is the
symmetry of higher-dimensional space, in which the no
equilibrium many-body system is embedded.

ConsiderN identical and independent simple and sy
metric random walks with initial positionsx1,x2,•••

,xN , wherexj are assumed to be even integers. One of
fundamental quantities in the vicious-walk problem@7# is the
probabilityNN(t,x), x5(x1 , . . . ,xN), that all walkers retain
the ordering of their positions up to timet; x1(s),x2(s)
,•••,xN(s) for all 0<s<t. In other words, it is the prob
ability that they never collide with each other for a tim
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period t. If two of them collide, then both are annihilate
since all walkers are vicious persons. It should be noted
this noncolliding conditionseems to be very local and inc
dental, since any walker can enjoy free walking, while t
relative distances from the nearest-neighbor walkers
greater than two units of lattice spacing. Fisher@6# and Huse
and Fisher@8# derived the asymptotic formNN(t,x);t2cN

in large t for finite x and determined the exponent as

cN5
1

2 S N
2 D5

1

4
N~N21!. ~1!

An interesting and important fact is thatcN is nonlinear inN
expressing the long-ranged effect among vicious walke
which is a result of accumulation of contact repulsive int
actions between nearest-neighbor walkers during the time
terval @0,t#. Moreover, Eq.~1! implies that the system pos
sesses symmetry with respect to permutations of the wa
positions. This hidden symmetry was clarified as follow
Huse and Fisher@6,8# mapped the enumeration problem
walks of the N particles from a set of positionsx1,•••

,xN to y1,•••,yN in time period t onto the diffusion
problem of a single particle in theN-dimensional space with
a set of wall restrictions~the phase space! from a position
x5(x1 , . . . ,xN) to y5(y1 , . . . ,yN) in time t. Assume that
p(t,yux) denotes the transition probability density of a on
dimensional Brownian motion fromx to y in time t, that is,
p(t,yux)5e2(y2x)2/2t/A2pt, then by exploiting the method
of images they derived theN-body Green function of vicious
walkers in the determinantal form@9#

f ~ t,yux!5 det
1< j ,k<N

@p~ t,ykuxj !#. ~2!

As discussed in Refs.@6,8# and explicitly shown in Ref.@10#,
Eq. ~2! is found to be factorized into a product of the sym
©2003 The American Physical Society12-1
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metric part~the Schur function multiplied by Gaussian ke
nels! and the antisymmetric part~the product of differences
of variables!, and NN(t,x) is obtained as an integration o
Eq. ~2! over y with restrictiony1,y2,•••,yN .

Based on the above knowledge of the functionNN(t,x),
let us next consider the evolution of vicious walkers in tim
t, conditioned that they retain their ordering~i.e., noncollid-
ing condition! up to a given finite timeT. Katori and
Tanemura@10# showed that this stochastic process was in
mogeneous both in space and time, and a transition in
particle distribution was observed as timet goes on from 0 to
T. This transition is characterized by a symmetry chan
which can be described neither in the real one-dimensio
space nor in theN-dimensional phase space, but in the spa
of N3N Hermitian matrices. That is, the problem was e
actly mapped to the statistics ofN real eigenvalues ofN
3N Hermitian random matrices in a time-dependent Gau
ian ensemble. Due to the Hermitian condition onN3N ma-
trices with complex elementsH jk5H jk

R 1 iH jk
I ,i 5A21,1

< j ,k<N, N(N11)/2 variables in setR5$H jk
R :1< j <k

<N% and N(N21)/2 variables in setI5$H jk
I :1< j ,k

<N% are chosen as independent variables. TheseN2 vari-
ables in total are assumed to be independently distribu
following the Gaussian distributions with zero means. T
variances of the variables inR andI are proportional tosR

ands I , respectively, both of which are functions oft. As the
time t approaches the final timeT, the variances I decreases
to zero and a transition from the ensemble of complex H
mitian matrices~the Gaussian unitary ensemble, GUE! to
that of real symmetric matrices~the Gaussian orthogonal en
semble, GOE! occurs. By integrating over theN85N22N
variables other than theN eigenvalues, a transition of th
eigenvalue statistics from the GUE class to the GOE clas
formulated@11#, and it is indeed realized as the time evol
tion of positions of vicious walkers@10,12,13#.

The above results suggest the possibility that vicio
walker-type problems withN walkers are generally mappe
to some solvable problems in the spaces with appropria
higher dimensionsN1N8, in which only the symmetries o
the spaces should be considered and the interactions~restric-
tions! among the original walkers are resulted from integr
ing over the auxiliaryN8 variables. The symmetries of th
higher-dimensional spaces govern the macroscopic beha
of the systems. The interacting particle systems far fr
equilibrium will be exactly solved, if we are able to fin
relevant symmetries, which are generally hidden in the or
nal descriptions of the systems.

Now we propose two kinds of problems of vicious walk
which will be solved in the present paper in order to dem
strate the above mentioned scheme for nonequilibrium
tems. We assume that all walkers are located in the pos
region of position as 0,x1,x2,•••,xN and put an ab-
sorbing wall at the origin0 ~see Fig. 1!. The problems are~i!
to determine the probabilityN̂N(t,x) that all the walkers re-
tain the ordering of their positions~noncolliding condition!
by keeping apart from the wall up to timet and ~ii ! to find
out the time-dependent matrix model, whose eigenvalue
02111
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tistics realize this stochastic process of vicious walkers w
a wall, and clarify the hidden symmetry transition in the tim
evolution.

The former problem~i! was already solved by Krattentha
ler et al. @14#, and the exponent governing the asympto
form in larget, N̂N(t,x);t2ĉN, was determined as

ĉN5
N2

2
. ~3!

So in this paper, we will start from their result and take t
continuum limit of the model to solve the latter problem~ii !.
In Sec. II, we construct a system of noncolliding Browni
motions with a wall as a diffusion scaling limit of the corre
sponding vicious-walker model. An important result is th
the N-body Green function of the obtained system is also
the determinantal form~2! for 0<x1,•••,xN ,0<y1
,•••,yN , if we replacep(t,yux) by

p̂~ t,yux!5
1

A2pt
$e2(y2x)2/2t2e2(y1x)2/2t%. ~4!

This function becomes zero asy→0, representing the effec
of the absorbing wall at0. There are two distinct ways to
derive Eq.~4!, given as follows.~a! Consider a Brownian
motion starting from the origin0 in a space with dimension
d>2. We adopt thed-dimensional spherical coordinater
5(r ,u1 , . . . ,ud21) to represent the motion. In particula
we can trace the radial coordinate~the modulus of the
Brownian motion! r 5r (t) as shown in Fig. 2~a! for d53.
Since the transition probability density ofr is generally de-
scribed using the Bessel function, such a stochastic pro
of r is called the Bessel process@15–17#. If we multiply the
transition probability density of the three-dimensional Bes
process byx/y, then Eq.~4! is obtained.~b! For a real path
of the Brownian motion from (x,0) to (y,t) in a spatiotem-
poral plane, we consider an imaginary path from (2x,0) to
(y,t), wherex,y.0 @see Fig. 2~b!#. As an analogy of elec-
trostatic problem, we subtract the transition probability de
sity of the imaginary paths from that of the real paths
obtain Eq.~4! ~the method of images!.

FIG. 1. Vicious walkers with a wall.
2-2
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Yor studied a temporally inhomogeneous process ca
the Brownian meander, which is obtained as a transform o
the three-dimensional Bessel process used in the above
vation ~a! of Eq. ~4!. He also introduced thed-dimensional
generalized meandersas the transform of thed-dimensional
Bessel processes@17#. In Sec. III, we will give a genera
theory of noncollidingN walkers constructed as a cond
tioned system ofd-dimensional generalized meanders. As
special case, it provides a proof that the noncolliding sys
of Brownian particles in the presence of a wall is equival
with the noncolliding system of the Brownian meande
This is the complete generalization, to many-particle syste
with an arbitrary number of particles,N, of the fact that the
single-particle Green function~4! of a Brownian motion with
wall restriction at the origin is proportional to the transitio
probability density of a single three-dimensional Bessel p
cess. A key point of our proof for this result is the prop
transform from theN-body Green function~2! to the transi-
tion probability density by multiplying an appropriate rat
of N̂N’s @see Eqs.~8! and~20! below#. Moreover, our genera
argument gives that, if we consider the problem~ii ! for the
d-dimensional Bessel processes and generalized meand
the case ofeven d, it is solved using the Gaussian matr
theory with chiral symmetries, which is relevant for th
physics of QCD at low energies@18–21#. Since Brownian
meander is made from thethree-dimensionalBessel process
as mentioned above, it is concluded that the present prob
with Eq. ~4! is not related with chiral symmetry of matrice
and that matrix models in the different symmetry clas
should be considered.

The latter derivation~b! of Eq. ~4! gave us a hint to find
out the true symmetries, which govern the distribution
vicious walkers with a wall;particle-hole symmetry. The
particle-hole symmetry is important in the BCS theory
superconductivity. In particular, its microscopic mean-fie
treatment ignores any local interactions among particles
holes, but considers this symmetry with the so-cal
Bogoliubov–de Gennes~BdG for short! Hamiltonian. A ran-
dom matrix theory of the BdG-type Hamiltonians was intr
duced and developed by Altland and Zirnbauer in order
describe the energy-level statistics and transport propertie
a metallic quantum dot in contact with a superconductor i

FIG. 2. ~a! Three-dimensional Bessel process.~b! Method of
images.
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magnetic field@22,23#. They studied the Gaussian ensemb
of the BdG Hamiltonian in the form

H5U†S v 0

0 2v
DU, v5diag~v1 , . . . ,vN!,

whereU is an appropriate unitary matrix. As we will give
summary of their results in Sec. IV, Altland and Zirnbau
discovered four new classes of eigenvalue statistics in a
tion to the previously known three classic Wigner-Dys
classes~two of them are GUE and GOE, whose relation wi
the vicious walks without a wall was reported in Ref.@10#!
and three chiral symmetry classes~two of them will be ar-
gued in Sec. III associated with the noncolliding systems
generalized meanders constructed from the even-dimens
Bessel processes!. In the four nonstandard symmetry classe
denoted byC, CI, D andDIII in Cartan’s notation@23#, the
classesC and CI are relevant in the present vicious-wa
problem. They have the probability density functions of no
negative eigenvalues in the form

pa,b
BdG~v;s2!}e2uvu2/2s2

)
1< j ,k<N

uvk2v j ub )
,51

N

uv,ua,

~5!

whereuvu25( j 51
N v j

2 and the indicesa andb are specified
as

a52, b52 for class C,

a51, b51 for class CI.

We will show in Sec. IV that the transition of distribution o
vicious-walker positions with a wall is described by the sy
metry change from classC to classCI of the BdG Hamilto-
nians. This fact was already reported by Nagao@24#, but in
this paper complementary results will be given. In an ear
paper@13#, the transition from GUE to GOE realized in th
vicious walks without a wall was characterized by t
graphical expansions with time-dependent coefficients
the moments of walkers. In Sec. V, we will introduce th
Möbius graph expansions for the moments of the vicio
walkers with a wall. Moreover, using exact results of d
namical correlations by Nagao@24#, closed formulas for the
moments will be given. Such graphical expansions will
reported in detail in the present paper for the nonstand
symmetry classesC and CI of Altland and Zirnbauer. Con-
cluding remarks are given in Sec. VI.

II. VICIOUS WALK WITH A WALL AND ITS DIFFUSION
SCALING LIMIT

A. Determinantal formula

First, we consider theN independent, simple and symme
ric random walks on an integer latticeZ5$ . . . ,22,
21,0,1,2, . . . % starting from the sites$xj%, j 51,2, . . . ,N,
and denote the position of thej th walker at time n
50,1,2, . . . by xj (n). Assume that the initial positions ar
all distinct non-negative even integers and ordered a
2-3
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<x1,x2,•••,xN . Then we impose the noncolliding cond
tion up to a given timem>0,

x1~n!,x2~n!,¯,xN~n!, n51,2, . . . ,m.

Such conditional walks are calledvicious walks up to time m
@6#. Here we impose further restriction on the walks as

xj~n!>0, j 51,2, . . . ,N, n51,2, . . . ,m.

In other words, there is a wall at the origin and all the wa
ers are conditionednever to collide with each other or to
collide with the wall during the time interval0<n<m.

Let N̂N(m,yux), x5(x1 , . . . ,xN), y5(y1 , . . . ,yN), be
the total number of the vicious walks with wall restrictio
in which the N walkers start from the positionsxj , j
51,2,̄ ,N, and arrive at the positionsyj , j 51,2,̄ ,N, at
time m. Krattenthaleret al. gave the determinantal formul
to this number as@14#

N̂N~m,yux!5 det
1< j ,k<N

F S m
m1xj2yk

2
D

2S m
m1xj1yk12

2
D G .

Suppose that all random walks start from given initial po
tions x. Since the total number of walks is 2mN, the prob-
ability that they are vicious walks with wall restriction an
end up with positionsy is N̂N(m,yux)/2mN.

B. Diffusion scaling limit

In order to take the continuum limit of the vicious walk
to derive the system of noncolliding Brownian motions, w
introduce a functionfL(x)52@Lx/2# for L.0, xPR ~the
set of all real numbers!, where@z# denotes the largest intege
not greater thanz, and let fL(x)5„fL(x1), . . . ,fL(xN)….
By Stirling’s formula, we can take the diffusion scaling lim
as

lim
L→`

S L

2D N

22NfL2~ t !N̂N@fL2~ t !,fL~y!ufL~x!#5 f̂ N~ t,yux!

for x,y with 0<x1,•••,xN ,0<y1,•••,yN , where

f̂ N~ t,yux!5 det
1< j ,k<N

@ p̂~ t,ykuxj !# ~6!

with Eq. ~4!. Let T.0 and consider a system ofN Brownian
motions conditioned never to collide with each other or
collide with the wall atx50 in @0,T#. Set

N̂N~ t,x!5E
0<y1,•••,yN

dy f̂ N~ t,yux!, ~7!

wheredy5) j 51
N dyj . Then the transition probability densit

from the state 0<x1,•••,xN at time s to the state 0<y1
,•••,yN at time t(>s) of such a system is given by
02111
-

-

ĝN,T~s,x;t,y!5
f̂ N~ t2s,yux!N̂N~T2t,y!

N̂N~T2s,x!
, ~8!

since the numerator is the probability that we have the n
colliding ~with each other and with a wall! Brownian paths
from x at times to y at time t and these paths keep nonco
liding from time t up to timeT as well, and the denominato
is the probability that the Brownian paths are noncolliding
during time interval@s,T#.

It is useful to rewrite Eq.~6! as

f̂ N~ t,yux!5~2pt !2N/2spj(y)~ex1 /t, . . . ,exN /t!

3e2(uxu21uyu2)/2t)
j 51

N

~exj /t2e2xj /t!

3 )
1< j ,k<N

$~exk /t2exj /t!~e(xj 1xk)/t21!%

3H )
j 51

N

exj /tJ 2N11

, ~9!

where j(y)5„j1(y), . . . ,jN(y)… with j j (y)5yN2 j 112(N
2 j 11), j 51,2, . . . ,N,

spj~z1 , . . . ,zN!5
det~zi

j j 1N2 j 11
2zj

2(j j 1N2 j 11)
!

det~zi
N2 j 112zi

2(N2 j 11)!
,

and uxu25( j 51
N xj

2 . Note that spl(z1 , . . . ,zN) is the charac-
ter of the irreducible representation corresponding to a pa
tion l of the symplectic Lie algebra~see, for example, Lec
tures 6 and 24 in Ref.@25#!. Since we know the formula

spj~1, . . . ,1!5 )
1< i , j <N

, j
22, i

2

mj
22mi

2)j 51

N
, j

mj
,

with , j5j j1N2 j 11, mj5N2 j 11 @25#, and the integral
„~17.6.6! on p. 354 in Ref.@26#…

E dxe2uxu2/2 )
1< i , j <N

uxj
22xi

2u2g)
j 51

N

uxj u2a21

52aN1gN(N21))
j 51

N
G~11 j g!G@a1g~ j 21!#

G~11g!
,

we have the asymptotic

N̂N~ t,x!5
1

c̃N

ĥN~x/At !@11O~x/At !# ~10!

for uxu/At→0, where c̃N5(p/2)N/2) j 51
N G(2 j )/G( j ) with

the Gamma functionG(z) and

ĥN~x!5 )
1< j ,k<N

~xk
22xj

2!)
,51

N

x, . ~11!

Substituting Eqs.~9! and ~10! into Eq. ~8!, we find
2-4
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VICIOUS WALKS WITH A WALL, NONCOLLIDING . . . PHYSICAL REVIEW E 68, 021112 ~2003!
ĝN,T~0,0;t,y!

5 ĉNTN2/2t2N(2N11)/2e2uyu2/2tĥN~y!N̂N~T2t,y!,

~12!

where ĉN51/) j 51
N G( j ). The transition probability densitie

~8! and ~12! define theN noncolliding Brownian motions
with wall restriction in time interval (0,T# @27#.

It should be noted thatN̂N(t,x) is the noncolliding prob-
ability of Brownian motions with wall restriction and Eq
~10! gives the power-law behaviorN̂N(t,x);t2ĉN in large t
for finite x with the critical exponent~3!.

C. Transition from class C to classCI

From Eq.~10!, the T→` limit of Eq. ~8! is determined
and simply given as

p̂N~0,x;t,y![ lim
T→`

ĝN,T~0,x;t,y!5
ĥN~y!

ĥN~x!
f̂ N~ t,yux!,

~13!

where we have sets50 and used Eq.~11!. Moreover, we can
take thex→0 limit of Eq. ~13! to obtain

p̂N~0,0;t,y!5c8̂Nt2N(2N11)/2e2uyu2/2tĥN~y!2, ~14!

wherec8̂N5(2/p)N/2/) j 51
N G(2 j ). That is, we have the iden

tity

p̂N~0,0;t,y!5N! p2,2
BdG~y;t !

for 0<y1,¯,yN , where p2,2
BdG(v;s2) is the probability

density function~5! of non-negative eigenvalues of the Bd
Hamiltonian in classC (a5b52). On the other hand, if we
set t5T in Eq. ~8!, for N̂N(0,y)51, we have

ĝN,T~0,0;T,y!5 ĉNt2N(N11)/2e2uyu2/2tĥN~y!, ~15!

which implies the identity

ĝN,T~0,0;T,y!5N! p1,1
BdG~y;t !.

That is, att5T, ĝN,T(0,0;T,y) is identified with the prob-
ability density function~5! of non-negative eigenvalues o
the BdG Hamiltonian in classCI (a5b51).

The above results mean the following facts. If we co
sider theN noncolliding Brownian motions with wall restric
tion up to a finite timeT.0, in which all particles start from
the origin, as the ratiot/T→0, the distribution of particle
positions is asymptotically described by the eigenvalue
tistics of the BdG Hamiltonian in classC. On the other hand
at the final timet5T, it can be identified with the eigenvalu
statistics of the BdG Hamiltonian in classCI. There occurs,
thus, a transition from the classC distribution to the classCI
distribution as timet goes on from 0 toT in our stochastic
process.
02111
-

a-

The essential difference between Eqs.~14! and ~15! is
found in the exponents of the factorsĥN(y)b such thatb
52 in Eq. ~14! andb51 in Eq. ~15!. This factor expresses
strong repulsive interactions among particles and betw
the wall and each particle, in which the larger exponenb
gives stronger repulsion for short distances. At the very ea
stage of the process,t/T!1, the repulsion may be strong
since the noncolliding condition will be imposed for a lon
time period up to timeT in the future. As the timet goes on,
the repulsion strength decreases as does the remaining
until T, and attains its minimum att5T.

D. Stochastic differential equations

As explained in Ref.@10# in the case without wall restric
tion, the positionsx(t)5„x1(t), . . . ,xN(t)… of theN noncol-
liding Brownian motions solve the stochastic different
equations in a modified type of Dyson’s Brownian motio
model @26,28#. In the present case with wall restriction, w
have

dxj~ t !5Êj
T@x~ t !#dt1dBj~ t !,

for 0<x1,•••,xN ,0,t<T, where

Êj
T~x!5

]

]xj
ln N̂N~T2t;x!,

and $Bj (t)% j 51
N are N independent standard Brownian m

tions

Bj~0!50, ^Bj~ t !&50,

^„Bj~ t !2Bj~s!…„Bk~ t !2Bk~s!…&5ut2sud jk

for any t,s.0,j ,k51,2, . . . ,N. In particular, in the limitT
→`, Eqs.~10! and ~11! give the equations

dxj~ t !5dBj~ t !1
1

xj~ t !
dt

1 (
1<k<N,kÞ j

H 1

xj~ t !2xk~ t !
1

1

xj~ t !1xk~ t !J dt

~16!

for 1< j <N @27#. In the stochastic differential equation fo
the position of thej th particle, the drift termsdt/xj (t) and
dt/„xj (t)2xk(t)… represent repulsive forces from the wall
the origin and that from thekth particle, respectively. In
addition to these, there are terms of the formdt/„xj (t)
1xk(t)…, 1<k<N,k5” j , which can be interpreted as effec
tive repulsive forces from the mirror images of other pa
ticles located at2xk(t), 1<k<N, kÞ j .
2-5
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III. NONCOLLIDING MEANDERS AND CHIRAL
RANDOM MATRIX THEORY

A. Definitions of elementary processes

Consider a diffusion equation in dimensiond>2,

]

]t
u~ t,yux!5

1

2 (
j 51

d
]2

]yj
2

u~ t,yux!

with the initial condition u(0,yux)5d(x2y). We use
the spherical coordinates x5(x,u1 , . . . ,ud21),y
5(y,w1 , . . . ,wd21) and integrate over all the angular var
ables to obtain a differential equation for the radial coor
nate~the modulus!

]

]t
ū~ t,yux!5

1

2 F ]2

]y2
1

d21

y

]

]yG ū~ t,yux!.

The unique solution of this equation satisfying the init
conditionū(0,yux)yd21dy5d(x2y)dy for x.0 is given as

ū~ t,yux!5
1

~xy!n

1

t
e2(x21y2)/2tI nS xy

t D ,

wheren5(d22)/2 andI n(z) is the modified Bessel func
tion,

I n~z!5 (
n50

`
~z/2!2n1n

n!G~n1n11!
.

If we setp(n)(t,yux)5ū(t,yux)yd21, then it is normalized as
*0

`p(n)(t,yux)dy51 for anyx.0. We definep(n)(t,yu0) by
the x→0 limit of p(n)(t,yux). Then we have

p(n)~ t,yux!5
yn11

xn

1

t
e2(x21y2)/2tI nS xy

t D , x.0,y>0,

p(n)~ t,yu0!5
y2n11

2nG~n11!tn11
e2y2/2t, y>0. ~17!

The d52(n11)-dimensional Bessel process is defined
that its transition probability density is given by Eq.~17!
@15–17#.

For 0<u<T,w>0, kP@0,2(n11)), weconsider

hT
(n,k)~u,w!5E

0

`

dz p(n)~T2u,zuw!z2k. ~18!

That is, we multiply a weightz2k at the final timeT, so that,
as the arrival positionz is nearer to the origin, the path i
more enhanced. Then the transition probability density fr
x at time s to y at time t with such bias at timeT, 0<s,t
<T, is given by

pT
(n,k)~s,x;t,y!5

1

hT
(n,k)~s,x!

p(n)~ t2s,yux!hT
(n,k)~ t,y!

~19!
02111
-

l

o

for x,y>0. This bias makes the process defined by Eq.~19!
temporally inhomogeneous, and Yor called it thegeneralized
meanderindexed (n,k). In particular, whenn51/2 andk
51, the process is called theBrownian meander@17#. The
transformation from Eq.~17! to pT

(n,k)(s,x;t,y) by Eq.~19! is
a generalization of theh transform of Doob@29#. Note that if
we replaceT by u in Eq. ~18!, thenhu

(n,k)(u,w)5w2k, since
p(n)(0,zuw)5d(z2w). In the casen51/2, k51, and s
50, Eq. ~19! becomes, by this replacemen
p(1/2)(t,yux)x/y, which is equal to Eq.~4! for I 1/2(z)
5A2/(pz)sinhz. This is the derivation~a! of Eq. ~4! men-
tioned in Sec. I.

B. Noncolliding systems and rectangular random matrices

Now we consider a system ofN generalized meander
conditioned that they never collide with each other for a tim
interval (0,T#,T.0. Using the determinantal formula in Eq
~2! and following the same way as Eqs.~8! and ~19!, the
transition probability density is given by

gN,T
(n,k)~s,x;t,y!5

f N,T
(n,k)~s,x;t,y!NN,T

(n,k)~T2t,y!

NN,T
(n,k)~T2s,x!

~20!

for 0<s,t<T,0<x1,•••,xN ,0<y1,•••,yN , where

f N,T
(n,k)~s,x;t,y!5 det

1< j ,k<N
@pT

(n,k)~s,xj ;t,yk!#, ~21!

and

NN,T
(n,k)~T2t,x!5E

0<y1,•••,yN

dyf N,T
(n,k)~T2t,x,T,y!.

Since f N,T
(n,0)(s,x;t,y) is temporally homogeneous and in

dependent ofT, we will write it as f N
(n)(t2s,yux). Moreover,

note that

f N,T
(n,k)~s,x;t,y!5

1

hT
(n,k)~s,x!

f N
(n)~ t2s,yux!hT

(n,k)~ t,y!,

~22!

where hT
(n,k)(t,x)5) j 51

N hT
(n,k)(t,xj ), and that hT

(n,k)(T,x)
5) j 51

N xj
2k . Then Eq.~20! can be written as

gN,T
(n,k)~s,x;t,y!5

1

ÑN
(n,k)~T2s,x!

3 f N
(n)~ t2s,yux!ÑN

(n,k)~T2t,y! ~23!

with

ÑN
(n,k)~ t,x!5E

0<y1,•••,yN

dyf N
(n)~ t,yux!)

j 51

N

yj
2k . ~24!

The important point is that we can confirm that Eq.~23! with
n51/2 andk51 is equal to the transition probability densi
~8! of the noncolliding Brownian motions with a wall. In
other words, we found the equivalence betweenthe noncol-
2-6
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liding Brownian motions with a walland the noncolliding
Brownian meanders. If we set N51 in Eq. ~24! with n

51/2,k51, we haveÑ1
(1/2,1)(t,x)51/x. Then Eq.~23! with

s50 is reduced to the equalityp̂(t,yux)5p(1/2)(t,yux)x/y,
which is the statement given as the derivation~a! of Eq. ~4!
in Sec. I.

We then consider the limituxu→0 to define the noncollid-
ing generalized meanders, all starting from the origin0 at the
initial time s50 for non-negative integersn ~i.e., evend).
Consider an arbitraryN13N2 complex matrices withN1
>N2. We denote byM(N1 ,N2 ;C) the space of all such
matrices. It is known @30# that any matrix A
PM(N1 ,N2 ;C) can be expressed by

A5U†LV, ~25!

whereU and V are unitary matrices with sizesN1 and N2,
respectively, andL is theN13N2 matrix in the form

L5S L̂

0
D with L̂5diag~a1 ,a2 , . . . ,aN2

!, ~26!

and whereaj>0,1< j <N2. The matrices (U,V) parametrize
the coset spaceU(N1)3U(N2)/@U(1)#N2, where@U(1)#N2

is the diagonal subgroup ofU(N2), and thus the (U,L,V)
can be regarded as ‘‘spherical coordinates’’ in the sp
M(N1 ,N2 ;C). It should be noted that$a1 , . . . ,aN2

% are not
eigenvalues ofA; they will be referred to as ‘‘radial coordi
nates.’’ The following integral formula proved in Ref.@20# is
useful. Let dm(U,V) be the Haar measure ofU(N1)
3U(N2)/@U(1)#N2. For A,BPM(N1 ,N2 ;C), set A
5UA

†LAVA , B5UB
†LBVB , where UA ,UBPU(N1),

VA ,VBPU(N2)/@U(1)#N2,

LA5S L̂A

0
D , LB5S L̂B

0
D ,

with L̂A5diag(a1 , . . . ,aN2
), L̂B5diag(b1 , . . . ,bN2

), aj

>0,bj>0,1< j <N2. Then for an arbitrary constants,

E dm~UA ,VA!expS 2
1

2s2
tr$~A2B!†~A2B!% D

}

det1< j ,k<N2FexpS 2
aj

21bk
2

2s2 D I N12N2S ajbk

s2 D G
)
j 51

N2

~ajbj !
N12N2 )

1< j ,k<N2

~aj
22ak

2!~bj
22bk

2!

.

Note that this integral formula can be regarded as a ver
of the Harish-Chandra~Itzykson-Zuber! formula @31–33#.

Using this integral formula, Eq.~21! with a non-negative
integern andk50 is written as
02111
e

n

f N
(n)~ t,yux!} )

1< j ,k<N
~xj

22xk
2!)

j 51

N

yj
2n11

3 )
1< j ,k<N

~yj
22yk

2!E dm~UY ,VY!

3expS 2
1

2t
tr$~X2Y!†~X2Y!% D .

Since tr$(X2Y)†(X2Y)%→trY†Y5uyu2 asuxu→0, we have

lim
uxu→0

f N
(n)~ t,yux!

)
1< j ,k<N

~xj
22xk

2!

})
j 51

N

yj
2n11 )

1< j ,k<N
~yj

22yk
2!e2uyu2/2t. ~27!

The above argument proves the following result. Letn be a
non-negative integer and 0<k,2(n11). The limit uxu→0
of gN,T

(n,k)(0,x,t,y) is given by

gN,T
(n,k)~0,0;t,y!5c e2uyu2/2t)

j 51

N

yj
2n11

3 )
1< j ,k<N

~yj
22yk

2!ÑN
(n,k)~T2t,y!,

~28!

where c is a normalization constant determined b
*0<y1, . . . ,yN

dygN,T
(n,k)(0,0;t,y)51. TheN noncolliding gen-

eralized meandersall starting from the origin0 at time 0are
defined by the transition probability density~28!.

C. Chiral Gaussian ensembles and transition of chiral
symmetries

For the spaceM(N1 ,N2 ;C) of all N13N2 complex ma-
trices, we introduce the integration measuredv(A)
5) j 51

N1 )k51
N2 dAjk

R dAjk
I for A5(Ajk)PM(N1 ,N2 ;C) with

Ajk5Ajk
R 1 iA jk

I ,i 5A21. The chiral GUE ~chGUE for
short! with variance s2 is the ensemble of matricesA
PM(N1 ,N2 ;C) with the probability measure

dmchGUE~A;s2!}expS 2
1

2s2
trA†AD dv~A!.

For APM(N1 ,N2 ;C) with the polar coordinates~25! and
~26!, we can show that the probability density function of t
radial coordinatesa5(a1 , . . . ,aN2

) of APM(N1 ,N2 ;C) in

chGUE with variances2 is given as
2-7
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pchGUE~a;s2!}e2uau2/2s2

)
j 51

N2

aj
2(N12N2)11

3 )
1< j ,k<N2

~aj
22ak

2!2.

Next we setM(N1 ,N2 ;R) as the space of allN13N2 real
matrices forN1>N2. The chiral GOE~chGOE! with vari-
ances2 is the ensemble of matricesBPM(N1 ,N2 ;R) with
the probability measure

dmchGOE~B;s2!}expS 2
1

2s2
trBTBD dv8~B!,

with dv8(B)5) j 51
N1 )k51

N2 dBjk . The probability density
function of the radial coordinatesb5(b1 , . . . ,bN2

) is given
in the form

pchGOE~b;s2!}e2ubu2/2s2

)
j 51

N2

bj
N12N2 )

1< j ,k<N2

ubj
22bk

2u.

Then we consider the distribution of the sum of two recta
gular matricesC5A1B, in which A andB are chosen from
chGUE and chGOE, respectively. The distribution functi
of C is the convolution of those of chGUE and chGO
Consider the ensemble of matricesCPM(N1 ,N2 ;C), in
which the probability measure is given as

dmchGUE/GOE~C;s1
2 ,s2

2!

5E
BPM(N1 ,N2 ;R)

dmchGUE~C2B;s1
2!dmchGOE~B;s2

2!.

We denote the probability density function of the radial c
ordinatesc5(c1 , . . . ,cN2

) of matrix C in this ensemble by

pchGUE/GOE(c;s1
2 ,s2

2 ;N1 ,N2).
Comparing the above definitions and Eq.~28!, we can

prove the following equality for non-negative integersn:

gN,T
(n,n11)~0,0;t,y!5N! pchGUE/GOES y;tS 12

t

TD ,
t2

T
;N1n,ND ,

where 0<y1,¯,yN . It implies that, ifn50,1,2, . . . , the
time evolution of the noncolliding generalized meanders
dexed (n,n11) is represented by the transition of the eige
value statistics from the chGUE class to the chGOE clas

IV. GAUSSIAN ENSEMBLES OF BOGOLIUBOV –DE
GENNES RANDOM MATRICES

Since we have found that the noncolliding Brownian m
tion with a wall is equivalent with the noncolliding system
Brownian meanders with indicesn51/2 andk51, it does
not belong to the chiral symmetry classes discussed in
preceding section. We have to consider the ensemble
Hermitian matrices in the form of the BdG Hamiltonian f
the mean-field theory of superconductivity.

As shown in Sec. II C, the time evolution of spatial di
02111
-

.

-

-
-

-

e
of

tribution of particles in the present system can be regarde
a transition of the eigenvalue statistics of the BdG rand
Hamiltonian in the classC to classCI. The former statistics
are characterized by the exponentb52 of the repulsive fac-
tor ĥN(y)b and the latter byb51. It does not imply, how-
ever, that the functional form of the distribution is mai
tained in form ~5! with a5b and only the exponentb
changes continuously as the time passes. In this section
ing a version of the Harish-Chandra~Itzykson-Zuber! inte-
gral formula over a unitary group, we show the fact that t
time evolution of the present process is described bytwo-
matrix modelcoupling random matrices, one of which
chosen from a Gaussian ensemble of the BdG Hamilton
matrices of classC and the other of which is from that o
classCI. There the time dependence of variances of th
two ensembles is different from each other.

A. Hermitian and real symmetric matrices with particle-hole
symmetry

We consider the space of the Hermitian matrices speci
by the following:

M BdG~2N;C!5HH5S a b

b† 2aTD : a is an N3N

Hermitian matrix andb is an N3N

complex symmetric matrixJ .

Since the dimension of the space ofa is N2 and that ofb is
N(N11), the dimension ofM BdG(2N;C) is N(2N11).
Define

C5S 0 I N

2I N 0 D , ~29!

whereI N is theN3N unit matrix. ThenHPM BdG(2N;C)
has the following symmetry@22,23#:

H52CH TC 21. ~30!

Assume thatw j is the 2N-dimensional eigenvector ofH with
an eigenvalue v j ; Hw j5v jw j . Then by Eq. ~30!,
2CH TC 21w j5v jw j . Take the complex conjugate of bot
sides and use the Hermiticity ofH and the factC 2152C,
we haveH(Cw j* )52v j (Cw j* ). This means thatCw j* is the
eigenvector ofH with the eigenvalue2v j . Assume that
v1 ,v2 , . . . ,vN be the non-negative eigenvalues ofH, then
other eigenvalues are given by2v1 , . . . ,2vN . Therefore,
if we set

S U1
†

U2
†D[~w1 , . . . ,wN!, U[S U1 U2

U2* 2U1*
D , ~31!

then
2-8
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HU†5U†L with L5S v 0

0 2v
D .

We assume thatU is unitary. Then we can see thatiU satis-
fies the relationC5( iU )TC( iU ). The set of such 2N32N
unitary matrices is called the symplectic group Sp(2N;C)
@25,26#, whose dimension is,52N2.

The above consideration is summarized as follows:
HPM BdG(2N;C) can be diagonalized as

UHU†5L5S v 0

0 2v
D , iU PSp~2N;C!,

wherev5diag(v1 , . . . ,vN), v j>0,1< j <N. We then con-
sider the map

H°
w

~v,U !5@~v j !1< j <N ,p5~pm!1<m<,#, ~32!

wherep denotes the,-dimensional vector, whose elemen
are the independent variables ofU. We have the Jacobian o
this map as@23#

J~w!5UdetS ]H
]v1

, . . . ,
]H
]vN

,
]H
]p1

, . . . ,
]H
]p,

D U
5C~p!)

j 51

N

v j
2 )

1< j ,k<N
~v j

22vk
2!2, ~33!

whereC(p) is a function independent of the eigenvaluesv.
Next we consider the set

M BdG~2N;R!5HH5S a b

b 2aTD : a andb areN3N

real symmetric matricesJ .

In this case, since the dimensions of the spaces ofa andb are
both N(N11)/2, the dimension ofM BdG(2N;R) is N(N
11). We can see that anyHPM BdG(2N;R) can be diago-
nalized as

U8HU8T5L5S v 0

0 2v
D , iU 8PSp~2N; iR!,

where v5diag(v1 , . . . ,vN), v j>0,1< j <N. Here
Sp(2N; iR) is the symplectic group of 2N32N matrices
whose elements are purely imaginary. The map

H°
w8

~v,U8!5@~v j !1< j <N ,p85~pm!1<m<,8#, ~34!

with ,85dimension of Sp(2N;R)5N2, is considered. Here
p8 denotes the,8-dimensional vector with the elements
the independent variables ofU8. The Jacobian of this map i
determined as@23#

J~w8!5C8~p8!)
j 51

N

uv j u )
1< j ,k<N

uv j
22vk

2u, ~35!
02111
y

whereC8(p8) is a function independent of the eigenvalu
v. The important point is thatJ(w) and J(w8) are propor-
tional to uĥN(v)u2 and uĥN(v)u, respectively.

B. Gaussian ensembles and eigenvalue distributions

Altland and Zirnbauer introduced the Gaussian ensem
of the BdG Hamiltonians in M BdG(2N;C) and in
M BdG(2N;R), in which the probability measures are in th
form

mN~H;s2!dH}expS 2
1

4s2
trH 2D dH, ~36!

with variance 2s2. For HPM BdG(2N;C), we write the
complex variables asajk5ajk

R 1 ia jk
I ,bjk5bjk

R 1 ib jk
I with i

5A21,ajk
R ,ajk

I ,bjk
R ,bjk

I PR, and choose the independe
variables as $ajk

R ,bjk
R ,bjk

I :1< j <k<N%ø$ajk
I :1< j ,k

<N%. Since

trH 25(
j ,k

uH jku252(
j 51

N

$~aj j
R !21~bj j

R !21~bj j
I !2%

14 (
1< j ,k<N

$~ajk
R !21~ajk

I !21~bjk
R !21~bjk

I !2%,

the probability measure~36! is rewritten as

mN~H;s2!5)
j 51

N
e2(aj j

R)2/2s2

A2ps2

e2(bj j
R)2/2s2

A2ps2

e2(bj j
I )2/2s2

A2ps2

3 )
1< j ,k<N

e2(ajk
R )2/s2

Aps2

e2(ajk
I )2/s2

Aps2

3 )
1< j ,k<N

e2(bjk
R )2/s2

Aps2

e2(bjk
I )2/s2

Aps2
~37!

with the integration measure

dH5)
j 51

N

daj j
Rdbj j

Rdbj j
I )

1< j ,k<N
dajk

R dajk
I dbjk

R dbjk
I .

~38!

The probability measure ~36! is given for H
PM BdG(2N;R) by setting all the imaginary parts$ajk

I ,bjk
I %

as zeros in Eqs.~37! and ~38!.
On the other hand, following the maps~32! and~34!, the

integration measures are transformed as

dH}J~w!dvdU}ĥN~v!2dvdU ~39!

for HPM BdG(2N;C), iU PSp(2N;C), and

dH}J~w8!dvdU8}uĥN~v!udvdU8 ~40!

for HPM BdG(2N;R), iU 8PSp(2N; iR), respectively.
Since trH 252uvu252( j 51

N v j
2 , integrating over the space

Sp(2N;C) and Sp(2N; iR) gives the distribution functions
2-9
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of the non-negative eigenvaluesv5(v1 , . . . ,vN),v i>0, in
the form of Eq.~5! with the indicesa5b52 ~classC) and
with a5b51 ~classCI), respectively.

C. Harish-Chandra integral formula

The transition probability density~12! from the state0 to
the statey in time t is written as follows using Eq.~7!, where
the proportional constants are independent of the stoch
variablesy,

ĝN,T~0,0;t,y!}e2uyu2/2tĥN~y!E
0<z1, . . . ,zN

dz f̂ N~T2t,zuy!

}ĥN~y!E dzsgn@ ĥN~z!#

3 det
1< j ,k<N

@e2yj
2/2t2(yj 2zk)2/2(T2t)

2e2yj
2/2t2(yj 1zk)2/2(T2t)#

5ĥN~y!E dzsgn@ ĥN~z!#e2uzu2/2T

3 det
1< j ,k<N

H expF2
T

2t~T2t ! S yj2
t

T
zkD 2G

2expS 2
T

2t~T2t ! Fyj1
t

T
zkD 2G J .

Then we set vk85tzk /T,1<k<N, and regard v8
5(v18 , . . . ,vN8 ) as the non-negative eigenvalues of the B
Hamiltonian H85(Hjk8 )PM BdG(2N;R). By Eq. ~40!, dz
}dv8}dH8/uĥN(v8)u, and we have

ĝN,T~0,0;t,y!}ĥN~y!E dH8
1

ĥN~v8!
e2Tuv8u2/2t2

3 det
1< j ,k<N

FexpS 2
T

2t~T2t !
~yj2vk8!2D

2expS 2
T

2t~T2t !
~yj1vk8!2D G . ~41!

The result recently reported by Nagao@24# will give a ver-
sion of the Harish-Chandra~Itzykson-Zuber! integral for-
mula in the present case,

E dU expS 2
1

4s2
tr~U†HU2H8!2D

}
1

ĥN~v!ĥN~v8!
det

1< j ,k<N
@e2(v j 2vk8)2/2s2

2e2(v j 1vk8)2/2s2
#,

where the integral is taken over the unitary matricesU such
that iU PSp(2N;C), andH andH8 are Hermitian matrices
in M BdG(2N;C) and M BdG(2N;R) having the non-
02111
tic

negative eigenvalues v5(v1 , . . . ,vN) and v8
5(v18 , . . . ,vN8 ), respectively. Application of this identity to
Eq. ~41! gives

ĝN,T~0,0;t,y!}ĥN~y!2E dUE dH8

3expS 2
1

2~s8!2
tr~H8!2D

3expS 2
1

2s2
tr~U†YU2H8!2D ,

with s25t(12t/T) and (s8)25t2/T, where Y
5diag(y1 , . . . ,yN ,2y1 , . . . ,2yN), yj>0,1< j <N. This
can be regarded as a BdG version of the two-matrix mo
studied in@10# for the vicious-walker model without a wall
Since it is a convolution of two Gaussian distributions, w
will arrive at the equality

ĝN,T~0,0;t,y!}ĥN~y!2E dUm̂N,T~ t,U†YU!, ~42!

where, forHPM BdG(2N;C),

m̂N,T~ t,H!5)
j 51

N H e2(aj j
R)2/2sR

2

A2psR
2

e2(bj j
R)2/2sR

2

A2psR
2

e2(bj j
I )2/2s I

2

A2ps I
2 J

3 )
1< j ,k<N

H e2(ajk
R )2/sR

2

ApsR
2

e2(ajk
I )2/s I

2

Aps I
2 J

3 )
1< j ,k<N

H e2(bjk
R )2/sR

2

ApsR
2

e2(bjk
I )2/s I

2

Aps I
2 J ~43!

with

sR
25s21~s8!25t, s I

25s25tS 12
t

TD .

Now the transition from classC to classCI is explicitly
represented. The variancesR

2 increases linearly int, but s I
2

increases in time only up to timet5T/2 and then decrease
in time. As t→T, s I

2→0 making the imaginary parts of ma
trix elements zeros with probability one, and the symme
class is changed.

V. MOMENTS OF VICIOUS WALKERS WITH A WALL

In this section, we study the moments of positions of
cious walkers with a wall in order to characterize the tran
tion of distribution, as reported in Ref.@13# for the vicious
walkers without a wall. Thenth moment of the positions o
walkers is defined as
2-10
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mN,T~ t,n!5K (
j 51

N

xj
nL

t

5E
0<x1, . . . ,xN

dx(
j 51

N

xj
nĝN,T~0,0;t,x!

for n51,2, . . . , where xj denotes the position of thej th
walker.

A. Wick’s formula

By Eq. ~39! and equality ~42!, if n52k is even, k
51,2, . . . , wehave the equality

mN,T~ t,2k!5
1

2
^trH 2k&, ~44!

where

^trH 2k&5E trH 2km̂N,T~ t,H!dH.

Note that

tr~H 2k!5 (
j 1 , j 2 , . . . ,j 2k

Hj 1 j 2
Hj 2 j 3

. . . Hj 2k21 j 2k
Hj 2kj 1

,

where the sum is taken over allN2k combinations of indices
j 1 , j 2 , . . . ,j 2k .

Since Eq.~43! is a product of independent Gaussian in
gration kernels, we can apply the Wick formula with th
variances

^~aj ,
R !2&5

sR
2

2
~11d j ,!, ^~aj ,

I !2&5
s I

2

2
~12d j ,!,

^~bj ,
R !2&5

sR
2

2
~11d j ,!, ^~bj ,

I !2&5
s I

2

2
~11d j ,!

for 1< j <,<N, whered j , is Kronecker’s delta. These rela
tions are rewritten as

^aj ,amn&5^aj ,~aT!nm&5
c2

2
~d jnd,m1gd jmd,n!,

^bj ,bmn&5
c2

2
g~d jnd,m1d jmd,n!,

^bj ,~b†!mn&5
c2

2
~d jnd,m1d jmd,n!

for 1< j ,,,m,n<N, where
02111
-

c25
t~2T2t !

T
, g5

t

2T2t
.

Define

dN~ j ,,;m,n!5d jnd,m2d j 1N md,1N n2d j 2N md,2N n

1d j 1N md,2N n1d j 2N md,1N n . ~45!

Then we have the variance of the BdG-type Hamiltonian
our time-dependent ensemble as

^Hj ,Hmn&5
c2

2
$dN~ j ,,;m,n!1gdN~ j ,,;n,m!% ~46!

for 1< j ,,,m,n<2N. The Wick formula for Eq.~44! is thus

mN,T~ t,2k!5
1

2 (
j 1 , j 2 , . . . ,j 2k

(
pPS2k :R

3^Hj p(1) j p(1)11
Hj p(2) j p(2)11

&

3^Hj p(3) j p(3)11
Hj p(4) j p(4)11

& . . .

3^Hj p(2k21) j p(2k21)11
Hj p(2k) j p(2k)11

&,

~47!

with the identificationj 2k115 j 1, where the first sum is taken
over allN2k combinations of indicesj 1 , j 2 , . . . ,j 2k , and the
second one over the set of permutationsS2k of $1,2, . . . ,2k%
with the restriction

R:p~1!,p~3!,•••,p~2k21!,p~2 j 21!,p~2 j !,

1< j <k.

The total number of the terms in the second summation
(2k21)!!.

B. Möbius graph expansion

There are ten terms in variance~46! with Eq. ~45!. We
will represent each of them by a pair of lines as shown
Fig. 3 by expressing Kronecker’s deltad jn by a line without
an arrow connectingj andn, d j 1N m by a line with an arrow
in the direction fromj to m, and d j 2N m by a line with an
arrow in the direction fromm to j. The weights, which
should be multiplied to the factorc2/2, are also listed. We
regard these pairs of lines as the hems of ribbons. As sh
in Fig. 3, in ten kinds of ribbons, half of them are twisted a
others are untwisted. Two kinds of ribbons do not have a
arrows on hems and other eight kinds of ribbons have arr
on hems. We will call the ribbons having arrows in the sa
direction current ribbons(c ribbons for short!, the ribbons
having arrows in the opposite directionsexchange ribbons(e
ribbons!, and those not having any arrowsnormal ribbons(n
ribbons!.
2-11
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Inserting Eq.~46! into Eq. ~47! gives a sum of theK
5(2k21)!! 310k terms in the form mN,T(t,2k)5(1/
2)(c2/2)k(,51

K L, with L,5( j 1 , . . . ,j 2k
L,( j 1 , . . . ,j 2k). As

explained in Ref.@13#, each termL,( j 1 , . . . ,j 2k) is repre-
sented by a graph which consists of a 2k-gon with its edges
j 1 j 2, j 2 j 3, . . . ,j 2kj 1 connected byk ribbons to makek pairs
~Wick pairs!. Such graphs may be calledMöbius graphs
having ribbons with and without arrows. If we assume
that there arekn n ribbons,kc c ribbons andke e ribbons,
and among themwn n ribbons, wc c ribbons, andwe e
ribbons are twisted, the weight ofL,( j 1 , . . . ,j 2k) is
gwn(2g)kc2wc(21)wcgke2we5(21)kcgk2kn2w12wn, where
k5kn1kc1ke and w[wn1wc1we ~the total number of
twisted ribbons!. For each vertexj s ,1<s<2k, we take the
summation of the index over 1< j s<2N to calculateL, from
$L,( j 1 , . . . ,j 2k)%. Since each ribbon represents a product
two Kronecker’sd ’s in Eq. ~45!, any pair of indicesj s and j s8
connected by a line~a hem of ribbon! should be identified, or
identified in modulus6N, and the free indices remainin
after this ‘‘identification’’ of indices giveN dependence to
L, . We will find the following rules for theN dependence
where it should be noted that each vertex is the end poin
two lines~two hems of two ribbons! with or without arrows.
~i! If both of the lines connected to a vertex have no arro
then we will call such a vertex a0 vertex. The summation
over a free index on a 0 vertex gives 2N. ~ii ! If at least one
of the two lines connected to a vertex has an arrow and t
are not a pair of lines with inward and outward arrows, th
the summation over a free index on such a vertex givesN.
~iii ! Otherwise, the sum over free index becomes zero. C
sider the equivalence classes of the Mo¨bius graphs withn, c,
and e ribbons. If a class is expressed by a representa
graph, sayG, the number of elements of the classG ~i.e., the
number of graphs topologically equivalent withG) is de-
noted byuGu. Let V(G) be the total number of free indices o
G andV0(G) be the number of free indices on 0 vertices. S
Ĝ(k) as the collection of all such graphs$G%, then we have

FIG. 3. Ten kinds of ribbons with and without arrows. Weigh
are also listed.
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the combinatorial expression for the moments as

mN,T~ t,2k!5
1

2 S c2

2 D k

(
GPĜ(k)

uGu2V0(G)NV(G)

3~21!kc(G)gk2kn(G)2w(G)12wn(G).

In Ref. @13# the collection G of topologically distinct
Möbius graphs, which consist of 2k-gons andk normal rib-
bons, was introduced and the fact was used that each g
GPG having only untwisted ribbons~having some twisted
ribbons! defines an orientable~nonorientable! surfaceSG by
a map@34,35# to derive the 1/N2 (1/N) expansion. The num-
ber of distinct orientable~nonorientable! surfaces with genus
g obtained from the graphs without any twisted ribbons~with

m twisted ribbons! in G was denoted by«g(k) @36# ( «̃g,m(k)

@13#!. We notice that the Mo¨bius graphs inĜ(k) introduced
here are obtained by putting arrows on hems of some of
normal ribbons inGPG(k). The only allowed ways to pu
them are such that there are no pairs of lines with inward
outward arrows connected to a vertex~see Fig. 4!. We now
introduce the following multiplicative factors to«g(k) and

«̃g,m(k), Av0 ,kn ,kc

g (k)[ the number of allowed ways to pu

arrows on the hems of ribbons in a Mo¨bius graph without
twisted ribbons, which is mapped to a surface with genusg,
so that the graph haskn n ribbons,kc c ribbons, andv0 free
indices on 0 vertices, andÃv0 ,kn ,kc ,mn

g,m (k)[ the number of

allowed ways to put arrows on the hems of ribbons in
Möbius graph withm twisted ribbons, which is mapped to
surface with genusg, so that the graph becomes to havekn n
ribbons in whichmn are twisted,kc c ribbons, andv0 free
indices on 0 vertices. Here note that the total number
ribbons is fixed to bek, the number ofe ribbons should be
k2kn2kc , and that the total number of free verticesV(G)
is determined byk andg through the relations with the Eule
characteristicsx[V2k11 as x5222g for m50 and x
522g for m>1, respectively. Then we have the followin

FIG. 4. An example of allowed ways of putting arrows on ri
bons. The 0 vertices are marked by circles.
2-12
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1/N expansion formula for the moments:

mN,T~ t,2k!5
1

2 S c2

2 D k

Nk11(
g50

[k/2]

«g~k!S 1

N2D g

(
v050

k1122g

(
kn50

k

3(
kc

~21!kc2v0Av0 ,kn ,kc

g ~k!gk2kn

1
1

2 S c2

2 D k

Nk11(
g51

k S 1

ND g

(
m51

k

«̃g,m~k!

3 (
v050

k112g

2v0 (
kn50

k

(
kc

(
mn50

m

3~21!kcÃv0 ,kn ,kc ,mn

g,m ~k!gk2kn2m12mn. ~48!

Here we may prove thatÃv0 ,kn ,kc ,mn

g,m (k)50 for k2kn2m

12mn,0, and Eq.~48! will give a series with non-negative
powers ofg.

As an example, we consider the fourth moment. Fok
52, we found@13#

«0~2!52, «1~2!51, «̃1,1~2!54, «̃1,2~2!51,

«̃2,1~2!52, «̃2,2~2!52.

As we can confirm easily that the factorsAv0 ,kn ,kc

g (2) and

Ãv0 ,kn ,kc ,mn

g,m (2) have nonzero values only in the followin

cases:

A3,2,0
0 ~2!51, A1,2,0

1 ~2!51,

A0,1,1
1 ~2!54, A0,0,0

1 ~2!52,

Ã1,1,0,0
1,1 ~2!52, Ã2,2,0,1

1,1 ~2!51, Ã0,0,1,0
1,2 ~2!54,

Ã2,2,0,2
1,2 ~2!51, Ã0,1,1,0

2,1 ~2!52, Ã1,2,0,1
2,1 ~2!51,

Ã0,0,1,0
2,1 ~2!52, Ã0,1,0,1

2,1 ~2!52, Ã0,0,0,0
2,2 ~2!52,

Ã0,1,0,1
2,2 ~2!54, Ã1,2,0,2

2,2 ~2!51.

Then Eq.~48! gives

mN,T~ t,4!5
c4

4
$8N31~618g12g2!N2

1~112g15g2!N%. ~49!

By definition we will seeAv0 ,kn ,kc

0 (k)5dv0 k11dknkdkc0,

and thus the leading term in Eq.~48! for largeN is

mN,T~ t,2k!5
1

2 S c2

2 D k

~2N!k11«0~k!1O~Nk!.

Since«0(k) is the Catalan number, Wigner’s semicircle la
will hold in N→` also in the BdG random matrices.
02111
C. Calculation by density function

From Eq.~12! with Eqs.~7! and~11!, it is easy to see tha
ĝN,T(0,0;t,x) is symmetric inx1 , . . . ,xN . Then we can de-
fine the density function as

r̂~ t,x!5
1

~N21!! E0

`

)
j 52

N

dxj ĝN,T~0,0;t,x!

and the even moments~44! are calculated by it as

mN,T~ t,2k!5E
0

`

x2kr̂~ t,x!dx. ~50!

Let L j
(a)(z) be the Laguerre polynomials with parametera

defined as

L j
(a)~z!5

ezz2a

j !

dj

dzj
~e2zzj 1a!.

Using them witha51/2, we can define the monic polyno
mials Cj (z)5(21) j j !L j

(1/2)(z), which satisfy the orthogo-
nality *0

`z1/2e2zCj (z)C,(z)dz5hjd j , with hj5G( j
13/2)j !. Quite recently Nagao gave the general expressi
of dynamical correlations for the present system usingCj (z)
@24#. From his result, we can read the density functionr̂(t,x)
as

r̂~ t,x!5
2x2

c3
e2(x/c)2

(
j 50

N21
Cj„~x/c!2

…

2

hj

1
2x2

c3
e2(x/c)2

(
j 5N

`

(
,50

N21

(
m50

,

b j ,a,m

3
Cj„~x/c!2

…Cm„~x/c!2
…

hj
g j 2m,

where

a2 j ,5~21!,
~2 j !!

Ap

G~2 j 2,11/2!

~2 j 2, !! ,!
,

a2 j 11 ,5~21!,
~2 j 11!!

Ap
S 2 j 2,1

1

4D G~2 j 2,21/2!

~2 j 2,11!! ,!
,

b j 2,5
~21! j 11

2Ap

G~ j 22,21/2!

~ j 22, !!

j !

~2, !!
,

b j 2,11

5
~21! j

2Ap

j !

~2,11!! (
m50

[( j 22,21)/2]
G~ j 22,22m23/2!

~ j 22,22m21!!
.

Let H j (z) be the j th Hermite polynomial, H j (z)
5(21) jez2

(d/dz) je2z2
. If we use the following equalities

@37,38#:
2-13
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L j
(a21)~z!5L j

(a)~z!2L j 21
(a) ~z!,

zLj
(a11)~z!

5~ j 1a11!L j
(a)~z!2~ j 11!L j 11

(a) ~z!,

(
m50

j
m!

G~m1a11!
~Lm

(a)~z!!2

5
~ j 11!!

G~ j 1a11!
$L j

(a)~z!L j
(a11)~z!2L j 11

(a) ~z!L j 21
(a11)~z!%,
y
al

tic
po
ge
d
se
a
sio
m
in

a

02111
L j
(21/2)~z!5

~21! j

22 j j !
H2 j~Az!,

AzLj
(1/2)~z!5

~21! j

22 j 11 j !
H2 j 11~Az! for z>0,

we will have the following expression for the density fun
tion,
r̂~ t,x!5
N

24N23~N21!!G~N11/2!

1

c
e2(x/c)2H @H2N21~x/c!#22

~2N21!~N21!

N

c

x
H2N~x/c!H2N23~x/c!

2
N21

2N

c

x
H2N~x/c!H2N21~x/c!J

1
1

c (
j 5N

`

(
,50

N21

(
m50

,

b j ,a,mg j 2m
1

22m~2 j 11!!Ap
e2(x/c)2

H2 j 11~x/c!H2m11~x/c!. ~51!

Substituting Eq.~51! into Eq. ~50! and using the integral formulas of Hermite polynomials used in Ref.@13# and the relation
(,5m

n bn,a,m5dnm for n>m @24#, we will arrive at the expression

mN,T~ t,2k!5S c2

2 D k

N~2k21!!! (
j 50

k S 2N21
k2 j D2k2 jF S k

j D2S k21
j D H k2 j 21

2~k2 j 11!
1

N21

2N2k1 j J G
2S c2

2 D k

(
j 50

k21

(
,50

N21

(
m5,

k2 j 21

gm11 (
n5N

m2,1N

bm2,1N nan N2,21

3
~2k!! ~2N22,21!!2m2 j 11

j ! ~ j 12N22,1m2k!! ~k2 j 2m21!! ~k2 j 1m11!!
. ~52!
ive
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As a matter of course, when we setk52, Eq.~52! gives the
fourth moment~49!. The large-N behavior discussed below
Eq. ~49! is obtained also from Eq.~52!.

VI. CONCLUDING REMARKS

In the present paper we have considered the solvabilit
one-dimensional vicious-walker models, which are gener
zations of the model studied in earlier papers@10,12#. We are
interested in these systems as the nonequilibrium statis
models, since they provide in general spatially and tem
rally inhomogeneous systems. The temporally inhomo
neous one-particle systems have been extensively studie
Yor by constructing them from Brownian motions and Bes
processes@17#. Our present work may be regarded as
attempt to construct many-particle systems in one dimen
using such temporally inhomogeneous processes as ele
tary processes, so that we can also discuss the spatial
mogeneity.

We have imposed the noncolliding condition between p
of
i-

al
-
-
by
l

n
n

en-
ho-

r-

ticles, since we have considered them asvicious walkers.
This condition introduces the effective long-ranged repuls
interactions among particles and it may make the mod
nontrivial many-particle systems. Our strategy to analyze
models is to map these interacting particle systems to m
matrix models defined in the appropriate matrix spac
which have in general higher dimensions than the origi
phase spaces of particle systems. The particle positions
expressed by the statistics of eigenvalues@28# or the radial
coordinates@18–21,30# of random matrices.

We have proved the following equivalences in probabil
distributions.

~i! The noncolliding system of Brownian motions with
wall, defined as the continuum limit of the vicious-walk
model with a wall, and the noncolliding system of Brownia
meanders, which are constructed from the three-dimensi
Bessel process.

~ii ! The noncollidingN generalized meanders construct
from thed-dimensional Bessel processes withd52,4,6, . . .
and the radial coordinate of the$N1(d22)/2%3N rectan-
2-14
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gular random matrices in the Gaussian ensemble with ti
dependent variances~a two-matrix model of the chiral GUE
and chiral GOE!.

~iii ! The noncollidingN Brownian meanders and the no
negative eigenvalues of 2N32N BdG-type random Hamil-
tonians in the Gaussian ensemble with time-dependent v
ances~a two-matrix model of the BdG-type random matric
in classesC andCI of Altland and Zirnbauer!.

We have discussed the noncolliding system of general
meanders made from the general odd-dimensional Be
processes. So a natural question is what is the correspon
random matrix theory for the noncolliding system of gen
alized meanders associated with thed-dimensional Besse
processes withd55,7,9, . . . . As far as weknow, it is an
open problem.

We have claimed that the above equivalence between
interacting particle systems and the Gaussian multima
models implies the solvability of the systems. This statem
may be true, but to obtain exact expressions of general
relation functions for the multimatrix models@39,40# is far
from trivial and one has to use a series of techniques de
oped in the random matrix theory. Exact expressions of g
eral dynamical correlation functions enable us to discuss
infinite particle limit N→` of the nonequilibrium system a
reported in Refs.@12,41# for the vicious-walker model~non-
colliding Brownian motions! without a wall, and in Ref.@24#
for the system with a wall. We expect that the infinite partic
limits of dynamical correlations for the noncolliding gene
alized meanders can be generally evaluated by following
strategy employed in Refs.@24,42#.

As the simplest case of the correlation functions, the d
sity function can be determined. As reported in Ref.@13#,
er
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calculation of the moments of the positions of vicious wa
ers is related with an enumeration problem of orientable
nonorientable surfaces with a fixed number of genus, wh
are obtained from the Mo¨bius graphs with a fixed number o
twisted ribbons bymap @34,35#. In the present paper, w
showed that a graphical problem arises from the vicio
walker model with wall restriction; an enumeration proble
of the ways of assigning arrows on the ribbons of Mo¨bius
graphs following some rules. It should be noted that, roug
speaking, there were two kinds of ribbons in our expans
formula: with and without arrows. These ribbons are thinn
into lines and they are drawn on surfaces. Then this e
meration problem may provide, if we consider the lines
‘‘world lines’’ of particles, the statistical mechanics of com
posite particles on random surfaces.

Recently, a variety of problems associated with the c
ditional random walks/Brownian motions have been p
posed and intensively studied in statistical physics, e.g.,
passage problem@43#, ‘‘lion-lamb’’ problem @44,45#, diffu-
sion particle systems with mobile traps@46#, families of vi-
cious walkers@7#, leader and laggard problem@47#, system
of stochastic Loewner evolutions@48#, friendly walker mod-
els @49–53#, and so on. Solvability and unsolvability of thes
models will be important topics in statistical physics far fro
equilibrium.
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